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The technology underpinning high-throughput docking (HTD) has developed over the past few
years to where it has become a vital tool in modern drug discovery. Although the performance
of various docking algorithms is adequate, the ability to accurately and consistently rank
compounds using a scoring function remains problematic. We show that by employing a simple
machine learning method (naı̈ve Bayes) it is possible to significantly overcome this deficiency.
Compounds from the Available Chemical Directory (ACD), along with known active compounds,
were docked into two protein targets using three software packages. In cases where HTD alone
was able to show some enrichment, the application of naı̈ve Bayes was able to improve upon
the enrichment. The application of this methodology to enrich HTD results can be carried out
without a priori knowledge of the activity of compounds and results in superior enrichment of
known actives compared to the use of scoring methods alone.

Introduction

High throughput docking (HTD) is a commonly uti-
lized technique in modern drug discovery for screening
large compound databases with the aim of eliciting novel
drug candidates for a given therapeutic target.1;2 The
successful application of HTD is dependent upon a
three-dimensional structure of a given target and an
algorithm that orients the candidate molecule in the
active site in the proper binding pose. Most docking
algorithms perform well in this task. However, the
accurate determination of the binding energy is notori-
ously difficult and can introduce artifacts which bias the
results. The evaluation of binding affinities is commonly
determined through knowledge-based potentials, scoring
functions derived from molecular mechanics force fields,
or empirical energy functions.3 These scoring functions
are typically a summation of approximate terms related
to binding, such as atomic pairwise potentials.

Most HTD applications assume a rigid binding site
and lack explicit solvent, which are crucial for the
accurate calculation of binding free energy. Scoring
functions vary greatly in the accuracy of their predic-
tions, and all of them introduce separate biases to the
problem of producing an accurate ranked list of com-
pounds. Even the best scoring functions still rank some
potential drug candidates poorly as a result of their
inherent biases.4 Attempts have been made to reduce
the biases and weakness associated with scoring func-
tions by employing consensus scoring approaches.5-7

Although improved hit rates and enrichments have been
observed, the approach makes no attempt to improve
scoring per se, but instead simply attempts to reduce
the bias of any one function by polling votes for those
candidates which consistently score well. It has been
argued that the reason for the successful implementa-
tion of consensus scoring approaches is for the simple

statistical reason that the mean of repeated measure-
ments tends to be closer to the actual value.8

High throughput docking is in many ways analogous
to high throughput screening (HTS). In both cases the
number of compounds evaluated is typically on the order
of hundreds of thousands. In addition, artifacts in both
technologies make it difficult to accurately and consist-
ently identify true drug candidates without duplicate
screening or slower but more accurate docking calcula-
tions. Machine learning techniques have been success-
fully employed in HTS data analysis to minimize these
artifacts and enrich hit rates.9 Here we describe the
successful application of one such machine learning
technique, naı̈ve Bayes,10 to enrich the data from HTD
and overcome some of the weaknesses in the application
of scoring functions.

Methods

Workflow Followed in This Paper. The procedure
followed in this paper, for retrospective examples, is
exemplified in the workflow in Figure 1. A method is
described in which the ranked list of scored compounds
from HTD can be used to train a modified naı̈ve
Bayesian (NB) classifier which predicts and reranks the
compounds with superior results. This is achieved by
training the classifier with those few ligand structures
from the top scored poses from docking as “good” or well-
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Figure 1. Diagram of the analysis workflow described in this
paper.
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docked, and the rest of the ligand structures as “bad”
or poorly docked. In this way the docking score is used
to predetermine, in the absence of known activity, what
are likely to be active or inactive molecules. The NB
classifier takes as input the 2D fingerprints of the ligand
structures, which can be precalculated prior to docking.
The NB classifier predicts an improved ranking of the
compounds based on structural elements in the top
scored docking poses, by elimination of false positives
and the identification of false negatives.

Preprocessing of the Compound Database for
High-Throughput Docking. Along with a 3D struc-
ture of the target in question, a test set consisting of
compounds with known activities and inactive com-
pounds from the Available Chemicals Directory (ACD)11

was generated for testing and validation purposes. The
set of random inactive compounds from the ACD was
filtered such that salts were stripped and duplicates
were removed. Unity12 was then used to further filter
compounds which were either present in mixtures,
contained metals, were isotopes, did not possess any
carbon atoms, or had a ClogP greater than 5.0. This
resulted in a database containing 179 805 compounds.

For FlexX and Dock, the database was ionized and
Gasteiger-Marsili13 partial charges were assigned. To
prepare the database for docking with Glide, the ioniza-
tion and assignment of partial charges was carried out
using scripts supplied by Schrödinger.14

The series of known active compounds were also
appropriately protonated and partial charges were
assigned. The known active compounds were taken from
literature references, patents, or in-house projects at
Novartis for which either IC50 data was available for
the inhibition of the target protein, or validated hits
from HTS campaigns. Table 1 shows the number of
active compounds and the number of representative
structural classes for each of the active series.

Preparation of the Protein Targets for High-
Throughput Docking. Cocrystal structures of each of
the targets of interest, protein kinase B (PKB, PDB id
#1O6K),15 and protein-tyrosine phosphatase 1B (PTP-
1B, PDB id # 1C88),16 with bound inhibitors and
cofactors were taken from the Protein Data Bank.17

Water molecules were removed from all three crystal
structures, and hydrogen atoms were added using either
Sybyl12 (for docking using FlexX18 and Dock19) or
Maestro14 (for docking using Glide14). Gasteiger-
Marsili13 partial charges were added using Sybyl in
order to prepare the structures for Dock.

Docking of the Test Set against the Protein
Targets Using Dock. For each protein target, a set of
spheres was generated from the heavy atom positions
of the ligand in the cocrystal structure with the receptor
obtained from the Protein Data Bank. A 0.3 Å resolution
grid was calculated for energy scoring using an all-atom
model with a 10 Å distance cutoff, a distance dependent
dielectric constant (ε ) 4), and a bump overlap of 0.5 Å.

Docking was then carried out by matching heavy atoms
from the ligands in the sample database with the sphere
centers. A flexible docking procedure was followed in
which multiple anchors, each consisting of at least 10
heavy atoms, were generated and placed automatically
for each ligand. The ligands were built iteratively after
placement of the initial anchor, and the torsion drive
option was used within Dock to sample the low-energy
torsion angles. Twenty-five conformations were retained
in each cycle of anchor search/torsion drive. Minimiza-
tion of the entire molecule was carried out using 10
cycles consisting of 100 steps of simplex minimization
with a convergence of 0.1 kcal/mol. Only the top ranking
conformation from each ligand, corresponding to the
best Dock energy score, was retained and written out
to a multi-mol2 file.

Docking of the Test Set against the Protein
Targets Using FlexX. The default parameters for
FlexX were used as distributed by Tripos in Sybyl 6.9
for carrying out the flexible docking. The protein recep-
tor model was generated by including all residues
containing any atoms within 6.5 Å of the ligand in the
cocrystal structure in the receptor description file for
each protein. The best scoring conformation for each
ligand docked, according to the FlexX score, was written
out to a multi-mol2 file.

Docking of the Test Set against the Protein
Targets Using Glide. The default input parameters
were used for the generation of the command files for
docking small molecule databases as implemented in
the 5.1 release of Maestro.14 However, for the generation
of the scoring grids, a value of 1.0 × the van der Waals
radii of the protein atoms was used instead of 0.9. From
previous studies this value generated better results with
respect to enrichment and binding poses. The maximum
number of heavy atoms was set to 120, and the
maximum number of rotatable bonds allowed was 30.
The top scoring pose was retained for each ligand and
written to a maestro-formatted output file.

Evaluating Enrichment of the Known Actives
after High-Throughput Docking. For each of the
HTD runs, all of the resulting poses were ranked
according to their energies as calculated by the ap-
propriate scoring function (Dock, FlexX, or Glide score)
from the program which generated their final docking
pose. These ranked lists were then subsequently used
to generate the enrichment and Receiver Operating
Characteristic (ROC) curves.20 A ROC curve describes
the tradeoff between sensitivity and specificity. Sensi-
tivity is defined as the ability of the model to detect true
positives while specificity is its ability to avoid false
negatives. The area below a ROC curve can be used to
quantify the observed enrichment. A ROC value greater
than 0.9 is considered excellent, and a value below 0.6
represents no enrichment.

Extended-Connectivity Fingerprints (ECFPs).
Extended-connectivity fingerprints (ECFPs) were used
as structural descriptors for training the NB classifier,
both of which are implemented in Pipeline Pilot.21 The
ECFPs are a new class of fingerprints for molecular
characterization developed by Scitegic (Rogers and
Hahn, unpublished results) that rely on the Morgan
algorithm.22 The ECFP features correspond to the
presence of an exact structure (not a substructure) with

Table 1. The Number of Known Active Compounds for Each
HTD Target

protein target number of actives structural classes

PTP-1Ba 1327 6
PKB 266 4

a References 24-28.
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limited specified attachment points (Figure 2). In gen-
erating the fingerprints, the program assigns an initial
code to each atom. The initial atom code is derived from
the number of connections to the atom, the element
type, atomic charge, and atomic mass. This corresponds
to an ECFP with a neighborhood size of zero. These
atom codes are then updated in an iterative manner to
reflect the codes of each atom’s neighbors (Figure 2). In
the next iteration, a hashing scheme is employed to
incorporate information from each atom’s immediate
neighbors. Each atom’s new code now describes a
molecular structure with a neighborhood size of one.
This process is carried out for all atoms in the molecule.
When the desired neighborhood size is reached, the
process is complete and the set of all features is returned
as the fingerprint. For the ECFPs employed in this
paper, a neighborhood size of six was used to generate
the fingerprints. The resulting ECFPs can represent a
much larger set of features than other fingerprints and
contain a significant number of different structural
units crucial for the molecular comparison, among the
compounds. To accommodate the large amount of re-
sulting information, Pipeline Pilot uses a 32 bit hashing
scheme.

Naı1ve Bayes Classification. The naı̈ve Bayes clas-
sifier is a statistical modeling method based upon
Bayes’s rule of conditional probability. The formula
takes the following form:

where P(A|B) is the probability that event A will occur
given the condition that event B occurred. In the cases
studied in this paper, event A refers to the activity of a
given compound, while event B refers to the presence
of a certain ECFP bit. P(A) represents the probability
that event A will occur in a given dataset. P(B) is the
probability that a compound with a given feature occurs
in the dataset. P(A|B) therefore is the probability that
a given compound in the dataset will bind to the active
site of the protein given that it has a particular feature.
This probability is predicted from P(B|A), the probability

that a compound with a given 2D-descriptor is active,
along with P(A), and P(B):

The Naı̈ve Bayes classifier is referred to as naı̈ve
because it “naively” assumes independence among
events. If this is true, then it is valid to multiply
probabilities. Because each compound has n fingerprints
P(active|feature) becomes:

When training the naı̈ve Bayes classifier in Pipeline
Pilot, each bin contains the number of occurrences of a
given hashed fingerprint bit string. The normalized
probability is then calculated to provide a final contri-
bution of the feature to the total relative estimate.

Results
Defining the “Good” and “Bad” Compounds a

priori To Train the Naı1ve Bayes Classifier. To
correctly derive a NB classifier, and in the case of no a
priori knowledge of the activity of the docked structures,
one must define what are the representative active
(“good”) compounds and representative inactive (“bad”)
compounds. In this study the only way to determine an
appropriate differentiation of “good” and “bad” com-
pounds from HTD was to utilize the scoring function.
It was observed that a plot of a given compound’s
docking score versus its rank is sigmoidal. In the
authors’ experience, this relationship holds true regard-
less of the docking software, the protein target, or the
background databases used. Figure 3 depicts one such
plot showing the results of docking the PTP-1B active
set and the ACD inactive set with Glide. It can be
observed from Figure 3 that docked structures with a
favorable Glide score are in a region of the graph at the
far left with a large positive slope. The slope is nearly
flat throughout most of the dataset until the tail end of
the plot is reached. For the docked structures that were
scored very poorly by Glide, the slope once again
increases sharply.

Figure 2. Extended-connectivity fingerprint structure searches.
(a) A substructure search using the fragment shown at the
top will return the other two compounds shown, while a
substructure search using ECFPs will return only the bottom
compound. (b) The circle around a single atom in the structure
shown at the top illustrates an ECFP with a neighborhood size
of 0, ECFP_0. Subsequent iterations update this atom’s code
to include molecules two (middle) and three (bottom) bonds
distant, corresponding to ECFP_1 and ECFP_2, respectively.

P(A|B) ) P(B|A)
P(A)
P(B)

Figure 3. A plot of Glide docking energy versus compounds
rank for the combined PTP-1B active set and ACD database.

P(active|feature) ) P(feature|active)
P(active)

P(feature)

P(active|feature) ) P(feature1|active) ×
P(feature2|active) × P(feature3|active) ×

.... P(featuren|active)
P(active)

P(feature)
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It seems logical, from the plot shown in Figure 3, that
one could define the “good” and “bad” compounds by
assigning cutoffs based solely on the energies generated
by the scoring functions. However, it was unclear
whether to use two separate cutoffs or a single cutoff to
partition the dataset. If two cutoffs were applied, three
categories of compounds were generated. All compounds
with energies below the lower cutoff would be passed
to the NB classifier as the “good” compounds. Similarly,
all compounds with energies greater than the upper
cutoff would be passed to the module as the “bad”
compounds. The remaining set of compounds between
the lower and upper cutoffs would not be used by the
classifier. By applying a single cutoff, all compounds
with energies less than the threshold were considered
“good”, while all compounds with energies greater than
the threshold were considered “bad”.

After studying the effect on enrichment it was deter-
mined that a single cutoff was found to be the optimal
solution (data not shown). The value for that cutoff was
determined to be at a point roughly in the region where
the slope of the plot in Figure 3 drops from its initial
large positive value. To determine this value arithmeti-
cally we calculated frequencies of the scores generated
by Dock, FlexX, and Glide. Figure 4 shows an example
of one such histogram for the docking of the PTP-1B
active set and the ACD as inactive set using Glide. It
was observed that in the case of Glide and FlexX, the
cutoff point was approximately three standard devia-
tions below the mean energy. For Dock, the cutoff point
was approximately one standard deviation below the
mean energy.

A clear difference was noted between Dock and the
other two programs in how many standard deviations
were required to generate appropriate cutoff values.
Upon analysis of the kurtosis and skewness of the
energies generated by the various scoring functions
(Table 2), an interesting trend was noted that held for
all of the cases examined in this paper. For a normal
distribution, the value for kurtosis is 0 (normalized23)
and skewness is 0. Unlike FlexX and Glide, Dock had
values for the kurtosis and skewness which were
significantly larger than would be expected for a normal
distribution. Indeed, the distributions of Dock scores
were leptokurtic and positively skewed. Figure 5 is a
box plot showing the distribution of docking scores

generated by Dock, FlexX, and Glide. For a normal
distribution, the median and the mean should be equal.
In cases where a normal distribution is not followed and
the data is skewed, the mean is shifted in the direction
of the outliers. Taken together, these results suggest
that even for very large datasets, the distribution of
scores generated by the Dock scoring function do not
fit a normal distribution. A possible explanation for this
is related to the types of scoring functions used by the
docking software. In the case of FlexX and Glide, the
scoring functions are empirical in nature, while the
Dock scoring function is based upon a molecular me-
chanics force field not initially parametrized for scoring
docking poses.4

The Naı1ve Bayes Classifier Improves the En-
richment of High-Throughput Docking Results
Generated for PTP-1B by Dock, FlexX, and Glide.
Figure 6 show three enrichment plots (a. Glide, b. FlexX,
c. Dock) of the ACD set of compounds seeded with PTP-
1B active compounds from both in-house data and
published data sets.24-28 The plots show enrichment
curves before and after employing the NB classifier. All
three docking systems were able to provide initial
enrichment of the known actives. Subsequent applica-
tion of the NB classifier to each ranked list resulted in
improved enrichment of the known actives. Table 3
shows the dramatic increase in the total number of
actives captured in the top 10% (i.e. 14 039 compounds)
of the database for Dock and FlexX. In the case of Dock,
application of the NB classifier resulted in an additional
23% of known actives being captured in the top 10% of
the database. For FlexX, an additional 22% were

Figure 4. Histogram of Glide docking energy versus com-
pounds rank for the combined PTP-1B active set and ACD
database.

Table 2. Descriptive Statistics for the Docking Energies in the
ACD Test Case

target program mean median
standard
deviation kurtosis skewness

PTP-1B Dock -18.84 -20.92 23.78 525.72 18.86
FlexX -14.69 -14.15 7.65 2.10 -0.28
Glide -5.58 -5.60 1.33 0.51 -0.12

PKB Dock -17.75 -23.34 39.26 216.32 12.64
FlexX -17.56 -17.40 8.08 1.43 0.07
Glide -6.67 -6.62 2.05 0.39 -0.38

Figure 5. Box plot of docking scores for Dock, FlexX, and
Glide. The box spans 50% of the scores observed. The area
between the whiskers includes 95% of all scores. The first
outliers above and below the 95% and 5% cutoff are shown.
The median for each sample is shown as a solid line and the
mean as a dashed line.
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captured. Glide, which already yielded an enrichment
of 84% after docking, was improved to 91% after
applying the NB classifier. The area under the ROC
curve shows that the predictive model used (Dock/NB,
FlexX/NB, or Glide/NB) is excellent in all three cases.

The Naı1ve Bayes Classifier Fails To Improve the
Enrichment of High-Throughput Docking Results
Generated for PKB. Figure 7 illustrates three enrich-

ment curves generated in the same manner. The cor-
responding calculated values for the area under the
ROC curve are shown in Table 3. From docking and
scoring alone, and prior to the NB classifier, application
of Dock does not result in any enrichment of the dataset.
Similarly, FlexX shows only poor enrichment of the
data. However, Glide shows the best result with good
enrichment and a ROC curve value of 0.84. After
application of the NB classifier to these docking results,
the Dock/naı̈ve Bayes model still fails to produce any
enrichment, as expected. The FlexX/naı̈ve Bayes model
also fails to provide any enrichment, which might be
expected based upon the accuracy of the original rank-
ings. It was initially surprising, however, to observe that
the Glide enrichment results degenerated from the
previously good ROC area of 0.84 to 0.18, after the
application of the NB classifier. This observation can
be explained by closer examination of the original
enrichment curve prior to the application of the NB
classifier. Only those compounds ranked near the top
of the list by the scoring function are used to train the
NB classifier. Compounds are chosen that possess
energies lower than three standard deviations below the
mean energy. This results in the selection of compounds
from the top 1% of the compounds docked. Examination
of this portion of the enrichment curve in Figure 7, for
both Glide and FlexX, clearly shows that this region has
a negative deflection due to a number of false positives.
The majority of these very highly ranked compounds
possess negative formal charges (carboxylates etc),
which interact with the cationic manganese in the active
site of PKB. Consequently, these compounds receive
significantly higher scores than would otherwise be
expected. Although the enrichment curve for Glide
continues to improve (and to a lesser extent for FlexX),
this early region of the curve is precisely where the NB
classifier takes the majority of its “good” compound
examples from. As a result, the NB classifier eventually
generates a predictive model for active compounds based
upon data containing many false positives.

Negative Enrichment. Of the six experiments based
on the two targets and three software packages studied
in this paper, one (PKB:Dock) resulted in significant
negative enrichment after initial docking. The applica-
tion of naı̈ve Bayes makes a marginal improvement to
the enrichment results from negative to random. As
previously discussed, there are specific artifacts in the
docking model due to the presence of the two Mn2+ ions
in the PKB active site. In addition, structural rear-

Figure 6. Enrichment plots from docking known inhibitors
of PTP-1B using (a) Glide, (b) FlexX, and (c) Dock with the
ACD database, before and after the application of NB.

Table 3. Fraction of Actives Captured and the Area under the
Corresponding ROC Curves, before and after the Application of
NB

fraction of total
actives in top 10%

of database screened
area under
ROC curvea

target program before NB after NB before NB after NB

PTP-1B Dock 0.45 0.68 0.83 0.89
FlexX 0.72 0.91 0.89 0.95
Glide 0.84 0.89 0.94 0.96

PKB Dock 0.02 0.00 0.20 0.47
FlexX 0.10 0.00 0.65 0.26
Glide 0.48 0.02 0.85 0.22

a Qualitative interpretation of the area under ROC curves is
as follows: 0.0-0.6 fail; 0.6-0.7 poor; 0.7-0.8 fair; 0.8-0.9 good;
0.9-1.0 excellent.
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rangements due to global movements of PKB upon
binding to the substrate biased the docking results
toward low molecular weight compounds that were
negatively charged. Visual inspection of the docking
poses shows that Dock’s objective function seems to
favor ionic interactions over other types of hydrogen
bonding and van der Waals interactions. The resulting
failure of naı̈ve Bayes to significantly enrich these

results can therefore be explained. After initial ranking
on the basis of the poses generated by Dock, the
structural features of all the known inhibitors of PKB
determined by the ECFPs were found to be randomly
scattered throughout the dataset. Application of the
naı̈ve Bayes classifier therefore reranked the compounds
in the dataset in a random manner.

It is important to note that although the application
of the naı̈ve Bayes classifier improved the enrichment
from negative to random in the case of PKB:Dock, this
is not always the case. In other instances studied where
high-throughput docking generated negative enrich-
ment, the application of the naı̈ve Bayes classifier made
the enrichment significantly worse (data not shown).
Some caution is therefore required in applying the
classifier in situations where docking alone fails to
provide enrichment.

Discussion

We have demonstrated a novel procedure using the
NB classifier to further enrich results from high-
throughput docking. This approach is essentially an
alternative consensus scoring method using two distinct
techniques to rank compounds in virtual screening.
Unlike traditional consensus scoring approaches that
combine two or more 3D based scoring functions, here
we combine a 3D scoring function with a machine
learning method in a 2D space. In the first phase of
virtual screening of a compound database, HTD soft-
ware uses information on the three-dimensional struc-
ture of a protein, as well as other associated information
such as ionization states, and atomic charges to place
the compounds in the target active site. The compounds
were then ranked based upon their scores calculated
from their resulting poses generated by the docking
program by whatever scoring function the user chooses.
In the cases presented here, the scoring functions
provided by each program were used to score the poses.
The second phase of this virtual screening method
utilizes two-dimensional fingerprints (ECFPs) to train
a naı̈ve Bayes classifier based upon the top scoring
compounds and to then rerank all of the compounds in
the database.

A motivation for this work is based on trying to use
HTD to reduce the number of compounds needed to be
screening with HTS. HTD can be used prior to HTS by
generating a focused screening collection based on
highly ranked compounds. It is crucial that any technol-
ogy that attempts to improve screening efficiency does
so by capturing known actives within the first few
percent of the database in order to reduce the costs
associated with cherry picking a large subset of the
database.

On the basis of these results, we suggest using naı̈ve
Bayes, combined with ECFPs, routinely to improve the
enrichment results from HTD. In cases where HTD is
already successful, naı̈ve Bayes will provide significantly
improved results. However, there are some limitations.
In the case of PKB, the application of naı̈ve Bayes did
not improve the ranking of known actives. This was due
to the fact that the “good” compounds from the original
scoring used to create the naı̈ve Bayes model contained
100% of false positives. In cases where HTD alone does
not produce significant enrichment, it is not reasonable

Figure 7. Enrichment plots from docking known inhibitors
of PKB using (a) Glide, (b) FlexX, and (c) Dock with the ACD
database, before and after the application of NB.
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to expect the classifier to produce reliable results. In
other words, the classifier is incapable of rescuing poor
HTD results since the classifier must be trained with
meaningful data. A careful examination of the top
scoring poses after HTD for potential artifacts, which
are likely to lead to false positives, would alleviate this
problem.

The work described in this paper relies on the
hypothesis that the machine learning method, naı̈ve
Bayes, is tolerant toward noise.9 Results obtained from
HTD are often noisy due to the misclassification of
compounds as false negatives or positives; particularly
the numbers of false positives. The improved enrich-
ments indicate that naı̈ve Bayes combined with ECFPs
can be successfully used to filter false positives and
pinpoint the false negatives.

This method was developed to achieve the best
enrichment of true positive compounds to the very top
of the docked list of structures. Although this method
is not intended to improve all aspects of HTD such as
generating more accurate binding poses, as more ac-
curate methods do, it is a computationally inexpensive,
effective, and efficient tool, requiring only a few minutes
on a desktop PC, which can be easily and generically
applied to docking results for the purposes of creating,
for example, a more target-specific focused library.

Experimental Section

Docking Hardware. All high-throughput docking calcula-
tions were carried out on a 200 processor Linux cluster
consisting of 100 dual-processor Intel Pentium III CPUs (850
MHz) using the Linux 2.4.19 operating system.

Desktop Hardware. The Pipeline Pilot calculations in this
paper were carried out on a desktop PC with a 2.0 GHz Intel
Pentium 4 CPU with 1.00 GB of RAM operating under
Microsoft Windows XP, version 2002.

Software. Software versions described in this paper were:
Dock 4.0, FlexX 1.1, Glide 2.5, Sybyl 6.9, Unity 4.4, Maestro
5.1 and Pipeline Pilot 3.0.

Acknowledgment. The authors would like to thank
Goran Pocina from Informatics and Knowledge Man-
agement at Novartis Research for the maintenance of
the Linux cluster used to carry out the docking studies
described in this paper.
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